Кислотные оксиды не взаимодействуют с кислотами. Химические свойства оксидов

Содержание
  1. Химические свойства оксидов
  2. Page 3
  3. Классификация неорганических веществ
  4. Оксиды
  5. Основания
  6. Кислоты
  7. Соли
  8. ЕГЭ. Химические свойства оксидов
  9. Взаимодействие оксидов друг с другом
  10. Взаимодействие оксидов с кислотами
  11. Взаимодействие оксидов с основаниями
  12. Взаимодействие оксидов с солями
  13. Восстановление слабых металлов и металлов средней активности из их оксидов возможно с помощью водорода, углерода, угарного газа или более активного металла (все реакции проводятся при нагревании):
  14. Особенности свойств оксидов CO2 и SO2
  15. Особенности свойств оксидов азота (N2O5, NO2, NO, N2O)
  16. Химические свойства CO как сильного восстановителя
  17. Химические свойства SiO2
  18. Свойства оксида P2O5 как сильного водоотнимающего средства
  19. Термическое разложение некоторых оксидов
  20. Особенности оксидов NO2, ClO2 и Fe3O4
  21. Химические свойства оксидов: основных, амфотерных, кислотных – HIMI4KA
  22. Тренировочные задания
  23. Ответы

Химические свойства оксидов

Кислотные оксиды не взаимодействуют с кислотами. Химические свойства оксидов

Оксиды — это сложные вещества, состоящие из двух химических элементов, один из которых кислород, со степенью окисления –2. Лишь один химический элемент — фтор, соединяясь с кислородом, образует не оксид, а фторид кислорода OF2.

Классификация оксидов, которую мы ещё раз с вами повторим:

  • основные: металл в степени окисления +1 и +2;
  • амфотерные: металл в степени окисления +3 и +4. Исключения: ZnO, BeO, SnO, PbO;
  • кислотные: все неметаллы и металлы в степенях окисления +5, +6 и +7;
  • несолеобразующие: NO, N2O, CO, SiO.

Физические свойства оксидов.

  • По агрегатному состоянию оксиды делятся на три группы: твердые (K2O, Al2O3, P2O5), жидкие (SO3, Mn2O7), и газообразные (CO2, NO2, SO2).
  • По растворимости в воде оксиды делятся на растворимые (SO2, CO2, K2O) и нерастворимые (CuO, FeO, SiO2, Al2O3). Все кислотные оксиды, кроме SiO2, растворимы в воде. Среди основных оксидо растворимыми являются только оксиды щелочных металлов и щелочноземельных металлов. Амфотерные оксиды не растворяются в воде.

Химические свойства основных оксидов

1. Оксиды щелочных и щелочноземельных металлов взаимодействуют с водой с образованием щелочей:

Оксид + H2O = Щелочь;

K2O + H2O = 2KOH

CaO + H2O = Ca(OH)2

2. Общим свойством всех основных оксидов является их способность взаимодействовать с кислотами с образованием соли и воды:

Оксид + кислота = соль + H2O

CaO + H2SO4 = CaSO4 + H2O

CuO + 2HCl = CuCl2 + H2O

3. Основные оксиды взаимодействуют с кислотными оксидами с образованием солей:

Основные оксид + кислотный оксид = Соль

3СaO + P2O5 = Ca3(PO4)2

BaO + CO2 = BaCO3

Химические свойства кислотных оксидов

1. Большинство кислотных оксидов взаимодействуют с водой с образованием кислоты:

Кислотный оксид + H2O = кислота

P2O5 + 3H2O = 2H3PO4

N2O5 + H2O = 2HNO3

2. Общим свойством всех кислотных оксидов является их способность взаимодействовать с овнованиями с образованием соли и воды:

кислотный оксид + основание = соль + H2O

P2O5 + 6NaOH = 2Na3PO4 + 6H2O

SO2 + Ca(OH)2 = CaSO3 + H2O

3. Кислотные оксиды взаимодействую с основными оксидами с образованием солей (при нагревании)

Ксилотный оксид + основные оксид = соль;

3CaO + P2O5 = Ca3(PO4)2

CrO3 + CaO = CaCrO4

Химические свойства амфотерных оксидов

1. Амфотерные оксиды взаимодействуют с кислотами с образованием солей и воды — проявляют свойства основных оксидов.

Амфотерный оксид + кислота = соль + H2O

ZnO + 2HNO3 = Zn(NO3)2 + H2O

2. Амфотерные оксиды взаимодействуют со щелочами с образованием солей и воды — проявляют свойства ксилотных оксидов.

Амфотерный оксид + щелочь = соль + H2O

ZnO + KOH = K2ZnO2 + H2O

3. Амфотерные оксиды при нагревании взаимодействуют с кислотными оксидами с образованием солей.

Амфотерный оксид + кислотный оксид = соль

ZnO + CO2 = ZnCO3

4. Амфотерные оксиды при нагревании взаимодействуют с основными оксидами с образованием солей.

Амфотерный оксид + основный оксид = соль

ZnO + Na2O = Na2ZnO2

Получение оксидов

1. Взаимодействие простых веществ с кислородом:

Металл или неметалл + O2 = Оксид

2. Разложение некоторых оксокислот:

Оксокислота = кислотный оксид + H2O

3. Разложение нерастворимых основний:

Нерастворимое основание = основный оксид + H2O;

4. Разложение некоторых солей:

Соль = основный оксид + кислотный оксид

Электролиз ― это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через расплав или раствор электролита.

Катод К(-), к нему перемещаются катионы, катод отдаёт электроны катионам, катионы разряжаются, идёт процесс восстановления.

Анод А(+), к нему перемещаются анионы, анионы отдают электроны аноду и разряжаются, идёт процесс окисления.

Схема движения ионов в растворе или расплаве электролита под действием электрического тока:

Электролиз растворов отличается от электролиза расплавов тем, что процессы протекают сложнее из-за непосредственного участия воды.

Сущность электролиза состоит в том, что за счёт электрической энергии осуществляется химическая реакция, которая не может протекать самопроизвольно.

Схема электролиза расплава хлорида натрия:

  • на катоде всегда идет процесс восстановления;
  • на аноде всегда идет процесс окисдления.

При электролизе растворов как на аноде, так и на катоде могут происходить конкурирующие процессы.

Конкурирующими являются два окислительных и восстановительных процесса:

  • на аноде — окисление анионов и гидроксид-ионов;
  • на катоде — восстановление катионов и ионов водорода.

Катодные процессы в водных растворах солей:

 Электрохимическийряд напряжений металлов

Li, K, Ca, Na, Mg, AlMn, Zn, Fe, Ni, Sn, PbH2Cu, Hg, Ag, Pt, Au
Men+ — не восстанавливаются2H2O + 2e = H2 + 2OH-Men+ + ne = Me02H2O +2e = H2 + 2OH-H2Men+ + ne = Me0

Процесс на аноде зависит от материала анода и от природы аниона:

  1. Если анод растворимый (железо, медь, цинк, серебро и все металлы, которые окисляются в процессе электролиза), то независимо от природы аниона всегда идет окисление металла анода.
  2. Если анод нерастворимый (уголь, графит, платина, золото), то:
  • При электролизе растворов солей бескислородных кислот (кроме фторидов) на аноде идет процесс окисления аниона.
  • При электролизе растворов солей оксокислот и фторидов на аноде идет процесс окисления воды (выделяется кислород); анион не окисляется, остается в растворе. При электролизе растворов щелочей идет окисление гидроксид-ионов. 

Электролиз широко используется в промышленности для выделения и очистки металлов, получения щелочей, хлора, водорода. Алюминий, магний, натрий, кадмий получают только электролизом. Очистку меди, никеля, свинца проводят целиком электрохимическим методом.

Важной отраслью применения электролиза является защита металлов от коррозии; при этом электрохимическим методом на поверхность металлических изделий наносится тонкий слой другого металла — устойчивость к коррозии.

Page 3

Амины — это производные аммиака (NH3), в молекуле которого один, два или три атома водорода замещены углеводородными радикалами.

Классификация аминов

Номенклатура первичных аминов

Радикально-функциональнаяЗаместительная
CH3-NH2МетиламинАминометан
Изопропиламин2-аминопропан

Изомерия

Рассмотрим все виды изомерии на примере C4H11N

Изомерия цепиИзомерия положения функциональной группыИзомерия между типами аминов
CH3-CH2-CH2-CH2-NH2

Физические свойства:

Низшие предельные первичные амины — газообразные вещества, имеют запах аммиака, хорошо растворяются в воды. Амины с большей относительной молекулярной массой — жидкости или твердые вещества, растворимость из в воде с увеличением молекулярной массы уменьшается.

Химические свойства аминов

1. Водные растворы алифатических аминов проявляют щелочную реакцию, т.к. при их взаимодействии с водой образуются гидроксиды алкиламмония, аналогичные гидроксиду аммония:

Связь протона с амином, как и с аммиаком, образуется по донорно-акцепторному механизму за счет неподеленной электронной пары атома азота.

Алифатические амины — более сильные основания, чем аммиак, т.к. алкильные радикалы увеличивают электронную плотность на атоме азота за счет +I-эффекта. По этой причине электронная пара атома азота удерживается менее прочно и легче взаимодействует с протоном.

 2. Взаимодействуя с кислотами, амины образуют соли:

При нагревании щелочи вытесняют из них амины:

[CH3NH3]+Cl- + NaOH = CH3NH2 + NaCl + H2O

Ароматические амины являются более слабыми основаниями, чем аммиак, поскольку неподеленная электронная пара атома азота смещается в сторону бензольного кольца, вступая в сопряжение с его p-электронами.

Окисление аминов

Амины, особенно ароматические, легко окисляются на воздухе. В отличие от аммиака, они способны воспламеняться от открытого пламени.

4СH3NH2 + 9O2 = 4CO2 + 10H2O + 2N2

Взаимодействие с азотистой кислотой

Азотистая кислота HNO2 — неустойчивое соединение. Поэтому она используется только в момент выделения. Образуется HNO2, как все слабые кислоты, действием на ее соль (нитрит) сильной кислотой:

KNO2 + HCl = НNO2 + KCl

Строение продуктов реакции с азотистой кислотой зависит от характера амина. Поэтому данная реакция используется для различения первичных, вторичных и третичных аминов.

  • Первичные алифатические амины c HNO2 образуют спирты:

R-NH2 + HNO2 = R-OH + N2 + H2O

  • Вторичные амины (алифатические и ароматические) под действием HNO2

превращаются в нитрозосоединения (вещества с характерным запахом).

Реакция с третичными аминами приводит к образованию неустойчивых солей и не имеет практического значения.

Анилин – простейший представитель первичных ароматических аминов.

Физические свойства:

Бесцветная масляниста жидкость с характерным запахом, малорастворим в воде, ядовит.

Применение анилина:

1. Взрывчатые вещества.

2. Пластмассы. 

3. Фотореактивы.

4. Красители. 

5. Лекарственные вещества.

Аминокислоты

Аминокислоты — это производные углеводородов, содержащие аминогруппы (-NH2) и карбоксильные группы (-COOH).

Общая формула: (NH2)mR(COOH)n, где m и n чаще всего равны 1 или 2.

Классификация аминокислот:

По числу функциональных групп:

1. моноаминомонокарбоновые кислоты;

2. диаминомонокарбоновые кислоты;

3. моноаминодикарбоновые кислоты.

По положению аминогрупп:

1. α — аминокислоты;

2. β — аминокислоты;

3. γ — аминокислоты.

Формулы и названия некоторых α — аминокислот, остатки которых входят в состав белков.

Аминокислоты организма:

1. Заменимые (Синтезируются в организме человек. К ним относятся глицин, аланин, глутаминовая кислота, серин, аспарагиновая кислота, тирозин, цистеин).

2. Незаменимые (Не синтезируются в организме человека, поступают с пищей. К ним относятся валин, лизин, фенилаланин).

Физические свойства аминокислот:

Аминокислоты — бесцветные кристаллические вещества, хорошо растворяются в воде, температура плавления 230-300. Многие α-аминокислоты имеют сладкий вкус.

Химические свойства аминокислот:

Аминокислоты амфотерные органические соединения, для них характерны кислотно-основные свойства.

I. Общие свойства

1. Внутримолекулярная нейтрализация

Водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:

Водные растворы аминокислот имеют нейтральную, кислую или щелочную среду в зависимости от количества функциональных групп.

2. Поликонденсация → образуются полипептиды (белки):

II. Свойства карбоксильной группы (кислотность)

1. С основаниями → образуются соли:

NH2-CH2-COOH + NaOH → NH2-CH2-COONa + H2O

NH2-CH2-COONa -натриевая соль 2-аминоуксусной кислоты

2. Со спиртами → образуются сложные эфиры – летучие вещества (р. этерификации):

NH2-CH2-COOH + CH3OH → NH2-CH2-COOCH3 + H2O

NH2-CH2-COOCH3 — метиловый эфир 2- аминоуксусной кислоты

3. С аммиаком → образуются амиды:

NH2-CH(R)-COOH + H-NH2 → NH2-CH(R)-CONH2 + H2O

III. Свойства аминогруппы (основность)

1. С сильными кислотами → соли:

HOOC-CH2-NH2 + HCl → [HOOC-CH2-NH3]+Cl-

или HOOC — CH2 — NH2* HCl

2. С азотистой кислотой (подобно первичным аминам):

NH2-CH(R)-COOH + HNO2 → HO-CH(R)-COOH + N2↑+ H2O

гидроксокислота

Классификация неорганических веществ

Кислотные оксиды не взаимодействуют с кислотами. Химические свойства оксидов

Неорганическая химия — раздел химии, изучающий строение и химические свойства неорганических веществ.

Среди простых веществ выделяют металлы и неметаллы. Среди сложных: оксиды, основания, кислоты и соли. Классификация неорганических веществ построена следующим образом:

Большинство химических свойств мы изучим по мере продвижения по периодической таблице Д.И. Менделеева. В этой статье мне хотелось бы подчеркнуть ряд принципиальных деталей, которые помогут в дальнейшем при изучении химии.

Оксиды

Все оксиды подразделяются на солеобразующие и несолеобразующие. Солеобразующие имеют соответствующие им основания и кислоты (в той же степени окисления (СО)!) и охотно вступают в реакции солеобразования. К ним относятся, например:

  • CuO — соответствует основанию Cu(OH)2
  • Li2O — соответствует основанию LiOH
  • FeO — соответствует основанию Fe(OH)2 (сохраняем ту же СО = +2)
  • Fe2O3 — соответствует основанию Fe(OH)3 (сохраняем ту же СО = +3)
  • P2O5 — соответствует кислоты H3PO4

Солеобразующие оксиды, в свою очередь, делятся на основные, амфотерные и кислотные.

  • Основные
  • Основным оксидам соответствуют основания в той же СО. В химических реакциях основные оксиды проявляют основные свойства, образуются исключительно металлами. Примеры: Li2O, Na2O, K2O, Rb2O CaO, FeO, CrO, MnO.Основные оксиды взаимодействуют с водой с образованием соответствующего основания (реакцию идет, если основание растворимо) и с кислотными оксидами и кислотами с образованием солей. Между собой основные оксиды не взаимодействуют.Li2O + H2O → LiOH (основный оксид + вода → основание)Li2O + P2O5 → Li3PO4 (осн. оксид + кисл. оксид = соль)Li2O + H3PO4 → Li3PO4 + H2O (осн. оксид + кислота = соль + вода)Здесь не происходит окисления/восстановления, поэтому сохраняйте исходные степени окисления атомов.

  • Амфотерные (греч. ἀμφότεροι — двойственный)
  • Эти оксиды действительно имеют двойственный характер: они проявляют как кислотные, так и основные свойства. Примеры: BeO, ZnO, Al2O3, Fe2O3, Cr2O3, MnO2, PbO, PbO2, Ga2O3.С водой они не взаимодействуют, так как продукт реакции, основание, получается нерастворимым. Амфотерные оксиды реагируют как с кислотами и кислотными оксидами, так и с основаниями и основными оксидами.Fe2O3 + K2O → (t) KFeO2 (амф. оксид + осн. оксид = соль)ZnO + KOH → K2[Zn(OH)4] (амф. оксид + основание = комплексная соль)ZnO + N2O5 → Zn(NO3)2 (амф. оксид + кисл. оксид = соль; СО азота сохраняется в ходе реакции)Fe2O3 + HCl → FeCl3 + H2O (амф. оксид + кислота = соль + вода; обратите внимание на то, что СО Fe = +3 не меняется в ходе реакции)

  • Кислотные
  • Проявляют в ходе химических реакций кислотные свойства. Образованы металлами и неметаллами, чаще всего в высокой СО. Примеры: SO2, SO3, P2O5, N2O3, NO2, N2O5, SiO2, MnO3, Mn2O7.Каждому кислотному оксиду соответствует своя кислота. Это особенно важно помнить при написании продуктов реакции: следует сохранять степени окисления. Некоторым кислотным оксидам соответствует сразу две кислоты.

    • SO2 — H2SO3
    • SO3 — H2SO4
    • P2O5 — H3PO4
    • N2O5 — HNO3
    • NO2 — HNO2, HNO3

    Кислотные оксиды вступают в реакцию с основными и амфотерными, реагируют с основаниями. Реакции между кислотными оксидами не характерны.

    SO2 + Na2O → Na2SO3 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +4)

    SO3 + Li2O → Li2SO4 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +6)

    P2O5 + NaOH → Na3PO4 + H2O (кисл. оксид + основание = соль + вода)

    При реакции с водой кислотный оксид превращается в соответствующую ему кислоту. Исключение SiO2 — не реагирует с водой, так как продукт реакции — H2SiO3 является нерастворимой кислотой.

    Mn2O7 + H2O → HMnO4 (сохраняем СО марганца +7)

    SO3 + H2O → H2SO4 (сохраняем СО серы +6)

    SO2 + H2O → H2SO3 (сохраняем СО серы +4)

Несолеобразующие оксиды — оксиды неметаллов, которые не имеют соответствующих им гидроксидов и не вступают в реакции солеобразования. К таким оксидам относят:

Реакции несолеобразующих оксидов с основаниями, кислотами и солеобразующими оксидов редки и не приводят к образованию солей. Некоторые из несолеобразующих оксидов используют в качестве восстановителей:

FeO + CO → Fe + CO2 (восстановление железа из его оксида)

Основания

Основания — химические соединения, обычно характеризуются диссоциацией в водном растворе с образованием гидроксид-анионов. Растворимые основания называются щелочами: NaOH, LiOH, Ca(OH)2, Ba(OH)2.

Гидроксиды щелочных металлов (Ia группа) называются едкими: едкий натр — NaOH, едкое кали — KOH.

Основания классифицируются по количеству гидроксид-ионов в молекуле на одно-, двух- и трехкислотные.

Так же, как и оксиды, основания различаются по свойствам. Все основания хорошо реагируют с кислотами, даже нерастворимые основания способны растворяться в кислотах. Также нерастворимые основания при нагревании легко разлагаются на воду и соответствующий оксид.

NaOH + HCl → NaCl + H2O (основание + кислота = соль + вода — реакция нейтрализации)

Mg(OH)2 → (t) MgO + H2O (при нагревании нерастворимые основания легко разлагаются)

Если в ходе реакции основания с солью выделяется газ, выпадает осадок или образуется слабый электролит (вода), то такая реакция идет. Нерастворимые основания с солями почти не реагируют.

Ba(OH)2 + NH4Cl → BaCl2 + NH3 + H2O (в ходе реакции образуется нестойкое основание NH4OH, которое распадается на NH3 и H2O)

LiOH + MgCl2 → LiCl2 + Mg(OH)2↓

KOH + BaCl2 ↛ реакция не идет, так как в продуктах нет газа/осадка/слабого электролита (воды)

В растворах щелочей pH > 7, поэтому лакмус окрашивает их в синий цвет.

Амфотерные оксиды соответствуют амфотерным гидроксидам. Их свойства такие же двойственные: они реагирую как с кислотами — с образованием соли и воды, так и с основаниями — с образованием комплексных солей.

Al(OH)3 + HCl → AlCl3 + H2O (амф. гидроксид + кислота = соль + вода)

Al(OH)3 + KOH → K[Al(OH)4] (амф. гидроксид + основание = комплексная соль)

При нагревании до высоких температур комплексные соли не образуются.

Al(OH)3 + KOH → (t) KAlO2 + H2O (амф. гидроксид + основание = (прокаливание) соль + вода — при высоких температурах вода испаряется, и комплексная соль образоваться не может)

Кислоты

Кислота — химическое соединение обычно кислого вкуса, содержащее водород, способный замещаться металлом при образовании соли. По классификации кислоты подразделяются на одно-, двух- и трехосновные.

Кислоты отлично реагируют с основными оксидами, основаниями, растворяя даже те, которые выпали в осадок (реакция нейтрализации). Также кислоты способны вступать в реакцию с теми металлами, которые стоят в ряду напряжений до водорода (то есть способны вытеснить его из кислоты).

H3PO4 + LiOH → Li3PO4 + H2O (кислота + основание = соль + вода — реакция нейтрализации)

Zn + HCl → ZnCl2 + H2↑ (реакция идет, так как цинк стоил в ряду активности левее водорода и способен вытеснить его из кислоты)

Cu + HCl ↛ (реакция не идет, так как медь расположена в ряду активности правее водорода, менее активна и не способна вытеснить его из кислоты)

Существуют нестойкие кислоты, которые в водном растворе разлагаются на кислотный оксид (газ) и воду — угольная и сернистая кислоты:

  • H2CO3 → H2O + CO2↑
  • H2SO3 → H2O + SO2↑

Записать эти кислоты в растворе в виде «H2CO3 или H2SO3» — будет считаться ошибкой. Пишите угольную и сернистую кислоты в разложившемся виде — виде газа и воды.

Все кислоты подразделяются на сильные и слабые. Напомню, что мы составили подробную таблицу сильных и слабых кислот (и оснований!) в теме гидролиз. В реакции из сильной кислоты (соляной) можно получить более слабую, например, сероводородную или угольную кислоту.

Однако невозможно (и противоречит законам логики) получить из более слабой кислоты сильную, например из уксусной — серную кислоту. Природу не обманешь :)

K2S + HCl → H2S + KCl (из сильной — соляной кислоты — получили более слабую — сероводородную)

K2SO4 + CH3COOH ↛ (реакция не идет, так как из слабой кислоты нельзя получить сильную: из уксусной — серную)

Подчеркну важную деталь: гидроксиды это не только привычные нам NaOH, Ca(OH)2 и т.д., некоторые кислоты также считаются кислотными гидроксидами, например серная кислота — H2SO4. С полным правом ее можно записать как кислотный гидроксид: SO2(OH)2

В завершении подтемы кислот предлагаю вам вспомнить названия основных кислот и их кислотных остатков.

Соли

Соль — ионное соединение, образующееся вместе с водой при нейтрализации кислоты основанием (не единственный способ). Водород кислоты замещается металлом или ионом аммония (NH4). Наиболее известной солью является поваренная соль — NaCl.

По классификации соли бывают:

  • Средние — продукт полного замещения атомов водорода в кислоте на металл: KNO3, NaCl, BaSO4, Li3PO4
  • Кислые — продукт неполного замещения атомов водорода: LiHSO4, NaH2PO4 и Na2HPO4 (гидросульфат лития, дигидрофосфат и гидрофосфат натрия)
  • Основные — продукт неполного замещения гидроксогрупп на кислотный остаток: CrOHCl (хлорид гидроксохрома II)
  • Двойные — содержат два разных металла и один кислотный остаток (NaCr(SO4)2
  • Смешанные — содержат один металл и два кислотных остатка MgClBr (хлорид-бромид магния
  • Комплексные — содержат комплексный катион или анион — атом металла, связанный с несколькими лигандами: Na[Cr(OH)4] (тетрагидроксохромат натрия)

Растворы или расплавы солей могут вступать в реакцию с металлом, который расположен левее металла, входящего в состав соли. В этом случае более активный металл вытеснит менее активный из раствора соли. Например, железо способно вытеснить медь из ее солей:

Fe + CuSO4 → FeSO4 + Cu (железо стоит левее меди в ряду активности и способно вытеснить медь из ее солей)

Замечу важную деталь: исход реакции основание + кислота иногда определяет соотношение. Запомните, что если двух- или трехосновная кислота дана в избытке — получается кислая соль, если же в избытке дано основание — средняя соль.

NaOH + H2SO4 → NaHSO4 (кислота дана в избытке)

2NaOH + H2SO4 → Na2SO4 + H2O (основание дано в избытке)

Если в ходе реакции соли с кислотой, основанием или другой солью выпадает осадок, выделяется газ или образуется слабый электролит (вода), то такая реакция идет. Кислую соль также можно получить в реакции соли с соответствующей двух-, трехосновной кислотой.

Na2CO3 + HCl → NaCl + H2O + CO2↑ (сильная кислота — соляная, вытесняет слабую — угольную)

MgCl2 + LiOH → Mg(OH)2↓ + LiCl

K2SO4 + H2SO4 → KHSO4 (средняя соль + кислота = кислая соль)

Чтобы сделать из кислой соли — среднюю соль, нужно добавить соответствующее основание:

KHSO4 + KOH → K2SO4 + H2O (кислая соль + основание = средняя соль)

Источник: https://studarium.ru/article/161

ЕГЭ. Химические свойства оксидов

Кислотные оксиды не взаимодействуют с кислотами. Химические свойства оксидов

Правило Комментарий
Основный оксид + H2O → ЩелочьРеакция идет, если образуется растворимое основание, а также Ca(OH)2: Li2O + H2O → 2LiOH Na2O + H2O → 2NaOH K2O + H2O → 2KOHCaO + H2O → Ca(OH)2 SrO + H2O → Sr(OH)2 BaO + H2O → Ba(OH)2MgO + H2O → Реакция не идет, ак как Mg(OH)2 нерастворим* FeO + H2O → Реакция не идет, так как Fe(OH)2 нерастворим CrO + H2O → Реакция не идет, так как Cr(OH)2 нерастворим CuO + H2O → Реакция не идет, так как Cu(OH)2 нерастворим
Амфотерный оксидАмфотерные оксиды, также как и амфотерные гидроксиды, с водой не взаимодействуют
Кислотный оксид + H2O → КислотаВсе реакции идут за исключением SiO2 (кварц, песок): SO3 + H2O → H2SO4 N2O5 + H2O → 2HNO3 P2O5 + 3H2O → 2H3PO4 и т.д.SiO2 + H2O → реакция не идет

* Источник: [2] «Я сдам ЕГЭ. Курс самоподготовки», стр. 143.

Взаимодействие оксидов друг с другом

1. Оксиды одного типа друг с другом не взаимодействуют:

Na2O + CaO → реакция не идет
CO2 + SO3 → реакция не идет

2.  Как правило, оксиды разных типов взаимодействуют друг с другом (исключения: CO2, SO2, о них подробнее ниже):

Na2O + SO3 → Na2SO4
CaO + CO2 → CaCO3
Na2O + ZnO → Na2ZnO2

Взаимодействие оксидов с кислотами

1. Как правило, основные и амфотерные оксиды взаимодействуют с кислотами:

Na2O + HNO3 → NaNO3 + H2O
ZnO + 2HCl → ZnCl2 + H2O
Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O

Исключением является очень слабая нерастворимая (мета)кремниевая кислота H2SiO3. Она реагирует только с щелочами и оксидами щелочных и щелочноземельных металлов.  
CuO + H2SiO3 → реакция не идет.

2. Кислотные оксиды не вступают в реакции ионного обмена с кислотами, но возможны некоторые окислительно-восстановительные реакции:

SO2 + 2H2S → 3S + 2H2O
SO3 + H2S → SO2­ + H2O

SiO2 + 4HF(нед.) → SiF4 + 2H2O

С кислотами-окислителями (только если оксид можно окислить):
SO2 + HNO3 + H2O → H2SO4 + NO

Взаимодействие оксидов с основаниями

1. Основные оксиды с щелочами и нерастворимыми основаниями НЕ взаимодействуют.

2. Кислотные оксиды взаимодействуют с основаниями с образованием солей:

SiO2 + 2NaOH → Na2SiO3 +H2O
CO2 + 2NaOH → Na2CO3 + H2O
CO2 + NaOH → NaHCO3 (если CO2 в избытке)

3. Амфотерные оксиды взаимодействуют с щелочами (т.е. только с растворимыми основаниями) с образованием солей или комплексных соединений:

а) Реакциях с растворами щелочей:

ZnO + 2NaOH + H2O → Na2[Zn(OH)4] (тетрагидроксоцинкат натрия)
BeO + 2NaOH + H2O → Na2[Be(OH)4] (тетрагидроксобериллат натрия)
Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4] (тетрагидроксоалюминат натрия)

б) Сплавление с твердыми щелочами:

ZnO + 2NaOH → Na2ZnO2 + H2O (цинкат натрия)
(кислота: H2ZnO2)
BeO + 2NaOH → Na2BeO2 + H2O (бериллат натрия)
(кислота: H2BeO2)
Al2O3 + 2NaOH → 2NaAlO2 + H2O (алюминат натрия)
(кислота: HAlO2)

Взаимодействие оксидов с солями

1. Кислотные и амфотерные оксиды взаимодействуют с солями при условии выделения более летучего оксида, например, с карбонатами или сульфитами все реакции протекают при нагревании:

SiO2 + CaCO3 → CaSiO3 + CO2­
P2O5 + 3CaCO3 → Ca3(PO4)2 + 3CO2­
Al2O3 + Na2CO3 → 2NaAlO2 + CO2
Cr2O3 + Na2CO3 → 2NaCrO2 + CO2
ZnO + 2KHCO3 → K2ZnO2 + 2CO2 + H2O

SiO2 + K2SO3 → K2SiO3 + SO2­
ZnO + Na2SO3 → Na2ZnO2 + SO2­

Если оба оксида являются газообразными, то выделяется тот, который соответствует более слабой кислоте:
K2CO3 + SO2 → K2SO3 + CO2­ (H2CO3 слабее и менее устойчива, чем H2SO3)

2. Растворенный в воде CO2 растворяет нерастворимые в воде карбонаты (с образованием растворимых в воде гидрокарбонатов):
CO2 + H2O + CaCO3 → Ca(HCO3)2
CO2 + H2O + MgCO3 → Mg(HCO3)2

В тестовых заданиях такие реакции могут быть записаны как:
MgCO3 + CO2 (р-р), т.е. используется раствор с углекислым газом и, следовательно, в реакцию необходимо добавить воду.

Это один из способов получения кислых солей.

Восстановление слабых металлов и металлов средней активности из их оксидов возможно с помощью водорода, углерода, угарного газа или более активного металла (все реакции проводятся при нагревании):

1. Реакции с CO, C и H2:

CuO + C →  Cu + CO­  
CuO + CO →  Cu + CO2
CuO + H2 →  Cu + H2O­                     

ZnO + C →  Zn + CO­
ZnO + CO →  Zn + CO2
ZnO + H2 →  Zn + H2O­

PbO + C →  Pb + CO
PbO + CО →  Pb + CO2­
PbO + H2 →  Pb + H2O

FeO + C →  Fe + CO
FeO + CО →  Fe + CO2­
FeO + H2 →  Fe + H2O

Fe2O3 + 3C →  2Fe + 3CO
Fe2O3 + 3CО →  2Fe + 3CO2
Fe2O3 + 3H2 →  2Fe + 3H2O­

WO3 + 3H2 → W + 3H2O

2. Восстановление активных металлов (до Al включительно) приводит к образованию карбидов, а не свободного металла:

CaO + 3C → CaC2 + 3CO
2Al2O3 + 9C → Al4C3 + 6CO

3. Восстановление более активным металлом:

3FeO + 2Al →  3Fe + Al2O3
Cr2O3 + 2Al → 2Cr + Al2O3.

4. Некоторые оксиды неметаллов также возможно восстановить до свободного неметалла:

2P2O5 + 5C → 4P + 5CO2
SO2 + C → S + CO2
2NO + C → N2 + CO2
2N2O + C → 2N2 + CO2
SiO2 + 2C → Si + 2CO

Только оксиды азота и углерода реагируют с водородом:

2NO + 2H2 → N2 + 2H2O
N2O + H2 → N2 + H2O

SiO2 + H2 → реакция не идет.

В случае углерода восстановления до простого вещества не происходит:
CO + 2H2 CH3OH (t, p, kt)

Особенности свойств оксидов CO2 и SO2

1. Не реагируют с амфотерными гидроксидами:

CO2 + Al(OH)3 → реакция не идет

2. Реагируют с углеродом:

CO2 + C → 2CO­
SO2 + C → S + CO2­

3. С сильными восстановителями SO2 проявляет свойства окислителя:

SO2 + 2H2S → 3S + 2H2O
SO2 + 4HI → S + 2I2 + 2H2O
SO2 + 2C → S + CO2
SO2 + 2CO → S + 2CO2 (Al2O3, 500°C)

4. Сильные окислители окисляют SO2:

SO2 + Cl2 SO2Cl2
SO2 + Br2 SO2Br2
SO2 + NO2 →  SO3 + NO
SO2 + H2O2 →  H2SO4

5SO2 + 2KMnO4 +2H2O →  2MnSO4 + K2SO4 + 2H2SO4
SO2 + 2KMnO4 + 4KOH →  2K2MnO4 +K2SO4 + 2H2O

SO2 + HNO3 + H2O → H2SO4 + NO

6. Оксид углерода (IV) CO2 проявляет менее выраженные окислительные свойства, реагируя только с активными металлами, например:

CO2 + 2Mg → 2MgO + C (t)

Особенности свойств оксидов азота (N2O5, NO2, NO, N2O)

1. Необходимо помнить, что все оксиды азота являются сильными окислителями.

Совсем необязательно помнить какие продукты образуются в подобных реакциях, так как подобные вопросы возникают только в тестах.

Нужно лишь знать основные восстановители, такие как C, CO, H2, HI и йодиды, H2S и сульфиды, металлы (и т.д.) и знать, что оксиды азота их с большой вероятностью окислят.

2NO2 + 4CO  → N2 + 4CO2
2NO2 + 2S → N2 + 2SO2
2NO2 + 4Cu → N2 + 4CuO

N2O5 + 5Cu → N2 + 5CuO
2N2O5 + 2KI → I2 + 2NO2 + 2KNO3
N2O5 + H2S → 2NO2 + S + H2O

2NO + 2H2 → N2 + 2H2O
2NO + C → N2 + CO2
2NO + Cu → N2 + 2Cu2O
2NO + Zn → N2 + ZnO
2NO + 2H2S → N2 + 2S + 2H2O

N2O + H2 → N2 + H2O
2N2O + C → 2N2 + CO2
N2O + Mg → N2 + MgO

2. Могут окисляться сильными окислителями (кроме N2O5, так как степень окисления уже максимальная):
2NO + 3KClO + 2KOH →  2KNO3 + 3KCl + H2O
8NO + 3HClO4 + 4H2O →  8HNO3 + 3HCl
14NO + 6HBrO4 + 4H2O →  14HNO3 + 3Br2
NO + KMnO4 + H2SO4 →  HNO3 + K2SO4 + MnSO4 + H2O
5N2O + 2KMnO4 + 3H2SO4 →  10NO + 2MnSO4 + K2SO4 + 3H2O.

3. Несолеобразующие оксиды N2O и NO не реагируют ни с водой, ни с щелочами, ни с обычными кислотами (кислотами-неокислителями).

Химические свойства CO как сильного восстановителя

1. Реагирует с некоторыми неметаллами:

2CO + O2 → 2CO2
CO + 2H2 CH3OH (t, p, kt)
CO + Cl2 COCl2 (фосген)

2. Реагирует с некоторыми сложными соединениями:

CO + KOH → HCOOK
CO + Na2O2 → Na2CO3
CO + Mg → MgO + C (t)

3. Восстанавливает некоторые металлы (средней и малой активности) и неметаллы из их оксидов:

CO + CuO → Cu + CO2
3CO + Fe2O3 → 2Fe + 3CO2
3CO + Cr2O3 → 2Cr + 3CO2

2CO + SO2 → S + 2CO2­ (Al2O3, 500°C)
5CO + I2O5 → I2 + 5CO2­
4CO + 2NO2 → N2 + 4CO2

3. С обычными кислотами и водой CO (также как и другие несолеобразующие оксиды) не реагирует.

Химические свойства SiO2

1. Взаимодействует с активными металлами:

SiO2 + 2Mg → 2MgO + Si
SiO2 + 2Ca → 2CaO + Si
SiO2 + 2Ba → 2BaO + Si

2. Взаимодействует с углеродом:

SiO2 + 2C → Si + 2CO
(Согласно пособию «Курс самоподготовки» Каверина, SiO2 + CO → реакция не идет)

3  С водородом SiO2 не взаимодействует.

4. Реакции с растворами или расплавами щелочей, с оксидами и карбонатами активных металлов:

SiO2 + 2NaOH → Na2SiO3 +H2O
SiO2 + CaO → CaSiO3
SiO2 + BaO → BaSiO3
SiO2 + Na2CO3 → Na2SiO3 + CO2
SiO2 + CaCO3 → CaSiO3 + CO2

SiO2 + Cu(OH)2 → реакция не идет (из оснований оксид кремния реагирует только с щелочами).

5. Из кислот SiO2 взаимодействует только с плавиковой кислотой:

SiO2 + 4HF → SiF4 + 2H2O.

Свойства оксида P2O5 как сильного водоотнимающего средства

HCOOH + P2O5 → CO + H3PO4
2HNO3 + P2O5 → N2O5 + 2HPO3
2HClO4 + P2O5 → Cl2O7 + 2HPO3.

Термическое разложение некоторых оксидов

В вариантах экзамена такое свойство оксидов не встречается, но рассмотрим его для полноты картины: Основные:

4CuO → 2Cu2O + O2 (t)

2HgO → 2Hg + O2 (t)

Кислотные:
2SO3 → 2SO2 + O2 (t)
2N2O → 2N2 + O2 (t)
2N2O5 → 4NO2 + O2 (t)

Амфотерные:
4MnO2 → 2Mn2O3 + O2 (t)
6Fe2O3 → 4Fe3O4 + O2 (t).

Особенности оксидов NO2, ClO2 и Fe3O4

1. Диспропорционирование: оксидам NO2 и ClO2 соответствуют две кислоты, поэтому при взаимодействии с щелочами или карбонатами щелочных металлов образуются две соли: нитрат и нитрит соответствующего металла в случае NO2 и хлорат и хлорит в случае ClO2:

2N+4O2 + 2NaOH → NaN+3O2 + NaN+5O3 + H2O

4NO2 + 2Ba(OH)2 → Ba(NO2)2 + Ba(NO3)2 + 2H2O

2NO2 + Na2CO3 →  NaNO3 + NaNO2 + CO2

В аналогичных реакциях с кислородом образуются только соединения с N+5, так как он окисляет нитрит до нитрата:

4NO2 + O2 + 4NaOH → 4NaNO3 + 2H2O

4NO2 + O2 + 2H2O → 4HNO3              (растворение в избытке кислорода)

2Cl+4O2 + H2O → HCl+3O2 + HCl+5O3
2ClO2 + 2NaOH → NaClO2 + NaClO3 + H2O 

2. Оксид железа (II,III) Fe3O4 (FeO·Fe2O3) содержит железо в двух степенях окисления: +2 и +3, поэтому в реакциях с кислотами образуются две соли:

Fe3O4 + 8HCl → FeCl2 + 2FeCl3 4H2O.

Источник: https://chemrise.ru/theory/inorganic6

Химические свойства оксидов: основных, амфотерных, кислотных – HIMI4KA

Кислотные оксиды не взаимодействуют с кислотами. Химические свойства оксидов
ОГЭ 2018 по химии › Подготовка к ОГЭ 2018

Определения и формулы основных, амфотерных и кислотных оксидов были приведены ранее в уроке 6.

Характерные химические свойства основных оксидов: реакции с кислотными оксидами с образованием солей и с кислотами с образованием солей и воды, например:

Некоторые основные оксиды реагируют с водой с образованием оснований. Эта реакция проходит в том случае, если продукт реакции растворим в воде:

В аналогичных условиях, например, оксид железа (II) с водой реагировать не будет, так как гидроксид железа (II) в воде нерастворим.

Амфотерные оксиды взаимодействуют как с кислотами, так и с основаниями с образованием солей и воды или комплексных соединений:

Кроме того, амфотерные оксиды могут взаимодействовать как с кислотными, так и с основными оксидами, например:

С водой амфотерные оксиды не взаимодействуют.

Кислотные оксиды реагируют с основными оксидами с образованием солей; с основаниями, с образованием солей и воды или кислых солей, а также с водой, в том случае если образующаяся в ходе такой реакции кислота растворима в воде:

Кроме того, кислотные оксиды вступают в окислительно-восстановительные и обменные реакции:

Тренировочные задания

1. Оксид натрия взаимодействует с каждым из двух веществ:

1) серная кислота и вода 2) уксусная кислота и азот 3) оксид лития и фосфор

4) оксид бария и серная кислота

2. Оксид калия взаимодействует с

1) азотом и фосфором 2) водой и сульфатом натрия 3) серной кислотой и оксидом фосфора (V)

4) литием и хлоридом натрия

3. Оксид кальция взаимодействует с

1) оксидом кремния 2) оксидом углерода (II) 3) оксидом азота (II)

4) оксидом азота (I)

4. Оксид бария взаимодействует с каждым из двух веществ:

1) азотной кислотой и водой 2) уксусной кислотой и хлором 3) оксидом натрия и азотом

4) оксидом серы (IV) и кремнием

5. Оксид магния не взаимодействует с

1) соляной кислотой 2) серной кислотой 3) оксидом лития

4) оксидом кремния

6. Оксид кальция взаимодействует с каждым из двух веществ:

1) оксидом фосфора (V), водой 2) оксидом углерода (IV) и сульфидом натрия 3) оксидом магния и азот

4) кислородом и сульфатом натрия

7. Оксид кальция реагирует с

1) медью 2) фосфором 3) оксидом углерода (IV)

4) оксидом магния

8. Оксид натрия реагирует с

1) водой 2) сульфатом калия 3) нитратом железа (II)

4) оксидом азота (II)

9. Оксид бария реагирует с каждым из двух веществ:

1) оксидом азота (II) и хлором 2) азотной кислотой и водой 3) оксидом углерода (II) и железом

4) серой и хлоридом кальция

10. Оксид магния реагирует с каждым из двух веществ:

1) оксидом кальция и оксидом железа (II) 2) оксидом алюминия и оксидом хрома (II) 3) соляной кислотой и оксидом кремния (VI)

4) оксидом фосфора (V) и цинком

11. Оксид цинка

1) растворяется в кислотах, но не реагирует с основаниями 2) растворяется в щелочах, но не реагирует с кислотами 3) реагирует с оксидом натрия, но не реагирует с водой

4) реагирует с оксидом калия и водой

12. Оксид хрома (III) реагирует с

1) оксидом калия 2) водой 3) оксидом серы (VI)

4) оксидом азота (I)

13. Оксид алюминия амфотерен, поскольку он способен взаимодействовать

1) как с азотной, так и серной кислотой 2) с водой и кислотами 3) с водой и щелочами

4) как с кислотами, так и со щелочами

14. Оксид алюминия реагирует с

1) сульфатом калия 2) оксидом калия 3) оксидом азота (II)

4) оксидом углерода (IV)

15. Оксид серы (VI) взаимодействует с каждым из двух веществ:

1) оксидом лития и углекислым газом 2) водой и углекислым газом 3) водой и гидроксидом калия

4) кислородом и натрием

16. Оксид фосфора (V) взаимодействует с каждым из двух веществ:

1) кислородом и водородом 2) водой и углекислым газом 3) водой и гидроксидом натрия

4) водой и оксидом углерода (II)

17. Оксид серы (VI) не взаимодействует с

1) водой 2) хлоридом калия 3) гидроксидом натрия

4) оксидом бария

18. Оксид серы (IV) взаимодействует с

1) оксидом углерода (IV) и водой 2) оксидом фосфора (V) и водой 3) сульфатом калия и водой

4) оксидом кальция и гидроксидом натрия

19. Оксид серы (IV) не взаимодействует с

1) водой 2) фосфатом кальция 3) раствором гидроксида натрия

4) гидроксидом кальция

20. Оксид хлора (VII) взаимодействует с каждым из двух веществ:

1) кальцием и углекислым газом 2) водой и углеродом 3) водой и оксидом калия

4) кислородом и азотом

21. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Na2O + HCl →
Б) Na2O + CO2 →
В) Na2O + O2 →

ПРОДУКТЫ РЕАКЦИИ
1) Na2CO3
2) NaCl + H2
3) NaCl + H2O
4) NaO3
5) Na2O2

22. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Na2O + H2SO4 (изб.) →
Б) Na2O + Al2O3 →
В) Na2O + P2O5 →

ПРОДУКТЫ РЕАКЦИИ
1) NaHSO4
2) NaHSO4 + H2O
3) NaAlO2
4) Na3PO4
5) Na2SO4 + H2O

23. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) CaO + H3PO4 (изб.) →
Б) CaO + H2O →
В) CaO + CO2 →

ПРОДУКТЫ РЕАКЦИИ
1) Ca(H2PO4)2 + H2O
2) CaCO3
3) Ca(OH)2
4) CaCO2
5) Ca3(PO4)2

24. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) CaO + SiO2 →
Б) CaO + H3PO4 (разб.) →
В) CaO + HCl →

ПРОДУКТЫ РЕАКЦИИ
1) Ca(H2PO4)2 + H2O
2) Ca3(PO4)2 + H2O
3) CaCl2 + H2O
4) CaSiO3 5) Ca(OCl)2

25. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА А) ZnO + HCl →

Б) ZnO + NaOH ⎯⎯H2O→

В) ZnO + Na2O ⎯⎯сплавление→

ПРОДУКТЫ РЕАКЦИИ
1) ZnCl2 + H2O
2) ZnCl2
3) Na2[Zn(OH)4] 4) Na2ZnO2 + H2O
5) Na2ZnO2

26. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) ZnO + H3PO4 →
Б) ZnO + NaOH + H2O →
В) ZnO + C →

ПРОДУКТЫ РЕАКЦИИ
1) Na2[Zn(OH)4] + H2
2) Na2ZnO2
3) Zn(H2PO4)2 + H2O 4) Zn + CO

5) Zn3(PO4)2 + H2O

27. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) P2O5 + H2O →
Б) P2O5 + Ca(OH)2 ⎯⎯сплавление→
В) P2O5 + NaOH (изб.) →

ПРОДУКТЫ РЕАКЦИИ
1) Ca3(PO4)2 + H2O
2) CaHPO4
3) Na3PO4 + H2O
4) Na3PO4
5) H3PO4

28. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) P2O5 + H2O →
Б) P2O5 + Na2O →
В) P2O5 + HNO3 →

ПРОДУКТЫ РЕАКЦИИ
1) H3PO4 + HNO2
2) H3PO4
3) Na3PO4
4) H3PO3
5) HPO3 + N2O5

29. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) SO2 + Ca(OH)2 (изб.) →
Б) SO2 + Na2O →
В) SO2 + O2 →

ПРОДУКТЫ РЕАКЦИИ
1) CaSO3 + H2O
2) SO3
3) Ca(HSO3)2
4) Na2SO4
5) Na2SO3

30. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) SO2 + H2S →
Б) SO2 (изб.) + NaOH →
В) SO2 + NaOH (изб.) →

ПРОДУКТЫ РЕАКЦИИ
1) Na2SO4 + H2O
2) Na2SO3 + H2O
3) NaHSO3
4) S + H2O
5) NaHSO4

31. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

32. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

33. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

34. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для первого превращения составьте сокращённое ионное уравнение реакции.

35. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

36. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

37. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

38. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

39. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

40. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

41. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

42. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для первого превращения составьте сокращённое ионное уравнение реакции.

43. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

44. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

45. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

46. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

47. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для первого превращения составьте сокращённое ионное уравнение реакции.

48. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

49. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

50. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

Ответы

Источник: https://himi4ka.ru/ogje-2018-po-himii/urok-15-himicheskie-svojstva-oksidov-osnovnyh-amfoternyh-kislotnyh.html

Умный водитель
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: